C11-C2-011	108.6 (4)	107.2 (2)
C4-C5-011	105.6 (4)	106.2 (2)
C3-C2-011	103.1 (3)	104.2 (1)
C4-C5-C6	114.4 (4)	112.2 (2)
C2-011-C5	110.2 (3)	109.8 (2)
C6-C5-011	107.9 (4)	109.6 (2)
C5—C6—I	109.3 (3)	
C5-C6-N7		116.5 (2)
C6-N7-C8		110.0 (2)
C6-N7-C9		110.7 (2)
C6-N7-C10		106.4 (2)
C8-N7-C9		110.8 (2)
C8-N7-C10		109.3 (2)
C9-N7-C10		109.6 (2)
C5-011-C2-C3	25.2 (4)	15.5 (2)
O11-C2-C3-C4	-38.9 (4)	-35.1(2)
C2-C3-C4-C5	38.0 (4)	40.6 (2)
C3-C4-C5-011	-23.8 (4)	-32.7 (2)
C4-C5-011-C2	-1.2(4)	10.7 (2)
C2-011-C5-C6	121.6 (4)	132.1 (2)
O11-C5-C6-X	175.3 (3) (X = I)	87.8 (2) (X = N7)

Hydrogen bond for $A - B \cdots C$	(2) $A \cdots C$	$B \cdots C$	$A - B \cdots C$
O12—H012· · ·I ⁱ	3.416 (2)	2.50 (4)	153 (3)
S	mmetry code: (i)	$x, \frac{3}{2} - y, \frac{1}{2} + z.$	

Table 3. Pseudorotational parameters (°) for all published muscarine ions and compounds (1) and (2)

The pseudorotational parameters were calculated by *PLATON* (Spek, 1991) according to the method described by Rao, Westhof & Sundaralingam (1981).

Compound	Phase	Amplitude	T - E
(1)	340.5 (4)	40.8 (3)	E_3
(2)	356.8 (2)	41.5 (1)	${}^{4}T_{3}$
MUSCAI ^a	31.6	26.6	${}^{4}T_{5}$
MUSCHL ^b	169.6 (1)	39.2 (1)	³ E
MUSPIC ^c	-5.7(1)	41.5 (1)	${}^{4}T_{3}$
MUSTPB ^d	0(2)	36.3 (9)	${}^{4}T_{3}$

Notes: (a) muscarine iodide (Jellinek, 1957); (b) muscarine chloride (Frydenvang & Jensen, 1990); (c) muscarine picrate (Frydenvang & Jensen, 1993); (d) muscarine tetraphenylborate (Frydenvang & Jensen, 1993).

Single crystals of (1) were obtained from a solution of the compound in 2-propanol. Single crystals of compound (2) were obtained by vapour diffusion of dimethoxymethane into a solution of the compound in methanol. The parameters of the benzenering H atoms in (1) and the H atoms of the aromatic rings and the quaternary ammonium group in (2) were not refined. Only the coordinates of the remaining H atoms were refined. In (2), high difference electron density is observed close to the iodide ion. Data reduction: *SDP BEGIN* (B. A. Frenz & Associates, Inc., 1982). Program(s) used to solve structure: *SDP PATTER-SON, DIRDIF*. Program(s) used to refine structure: *SDP LSFM*. Molecular graphics: *ORTEP* (Johnson, 1976).

The two compounds were kindly donated by Dr M. De Amici, University of Milano, Italy.

References

- Angeli, P., Gianella, M., Pigini, M., Gualtieri, F., Teodori, E., Valsecchi, B. & Gaviraghi, G. (1986). Eur. J. Med. Chem. Chim. Ther. 20, 517– 523.
- B. A. Frenz & Associates, Inc. (1982). SDP Structure Determination Package. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
- Dhanens, M., Lacombe, L., Lehn, J.-M. & Vigneron, J.-P. (1984). J. Chem. Soc. Chem. Commun. pp. 1097-1099.
- Frydenvang, K. (1989). PhD thesis, Royal Danish School of Pharmacy, Copenhagen, Denmark.
- Frydenvang, K. & Jensen, B. (1990). Acta Cryst. C46, 1279-1282.
- Frydenvang, K. & Jensen, B. (1993). Acta Cryst. C49, 985-990.
- Jellinek, F. (1957). Acta Cryst. 10, 277-280.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421-425.
- Spek, A. L. (1991). PLATON. Univ. of Utrecht, The Netherlands.

Acta Cryst. (1993). C49, 1840-1844

Structure of the Charge-Transfer Complexes 2,4,5,7-Tetranitro-9-fluorenone–1-Ethylnaphthalene (1/1) (I) and 2,4,5,7-Tetranitro-9-fluorenone–3,6-Dimethylphenanthrene (1/1) (II)

STEVEN L. BALDWIN AND RUSSELL G. BAUGHMAN*

Division of Science, Northeast Missouri State University, Kirksville, MO 63501, USA

(Received 8 June 1992; accepted 8 March 1993)

Abstract

In each structure the asymmetric unit consists of two molecules whose parallel rings are at van der Waals distances and stack, alternately, along the a axis for (I) and along the *n*-glide direction for (II). The carbon-skeleton geometry of the fluorenone within both charge-transfer complexes is not significantly altered from that of the parent 2,4,5,7-tetranitro-9-fluorenone.

Comment

As a continuation of a study in this laboratory of a series of $\pi-\pi^*$ charge-transfer complexes (Baughman, 1982, 1987; Shah & Baughman, 1993), the charge-transfer complexes of 2,4,5,7-tetranitro-9fluorenone (TNF) with 1-ethylnaphthalene (1-ETNP) and 3,6-dimethylphenanthrene (3,6-DMP) were investigated. As a result of somewhat high *B* values for C24 and C25 in TNF:1-ETNP, a separate

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71300 (61 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AB1063]

refinement assuming isotropic thermal parameters for C24 and C25 was performed. This produced no significant changes in bond distances and angles than noted when all non-H atoms were assumed to have anisotropic thermal parameters.

The average distances between the π systems of the nearly parallel molecules for TNF:1-ETNP and TNF:3,6-DMP are 3.45 (7) and 3.4 (2) Å, respectively, *i.e* the van der Waals distance (3.40 Å; Pauling, 1960). Rings in 1-ETNP, as well as the middle and end rings in the 3,6-DMP molecules, tend to be directly above the five- and six-membered rings in the TNF acceptor molecule. The asymmetric units stack as alternating acceptor/donor molecules generally along the *a* axis in TNF:1-ETNP and along the *n*-glide direction in TNF:3,6-DMP.

Distances and plane angles in the TNF portion of the title compounds are not significantly different from those in the parent TNF (Baughman, 1987). Since both of the complexes and the pure TNF crystals (Baughman, 1987) have centrosymmetric space groups, both + and - values of a torsional angle will be present in the unit cell. So, comparisons need to be made with either/both values. In addition, the asymmetric unit of TNF contains two conformers. The C5-C12-C11-C4 and C13-C12-C11-C10 torsional angles in the five-membered ring of TNF in TNF:1-ETNP have values of $\pm 12(1)$ and $\pm 9.7 (7)^{\circ}$, respectively, and values of $\pm 8 (1)$ and ± 3.3 (7)° in the TNF portion of TNF:3,6-DMP. This set of torsional angles in the 1-ETNP complex compares more favorably with the corresponding angles in the A molecule of TNF $[\pm 17(1)]$ and $\pm \bar{8}.5^{\circ}$, respectively]. However, the set of angles in the 3.6-DMP complex compares better with the TNF molecule B [$\pm 7.5(9)$ and $\pm 5.1^{\circ}$]. Future crystallographic and quantum-mechanical work in this series of compounds should help to demonstrate any patterns from which a better understanding of charge-transfer bonding may evolve.

Fig. 1. The TNF:1-ETNP asymmetric unit showing 50% probability ellipsoids.

Fig. 2. The TNF:3,6-DMP asymmetric unit showing 50% probability ellipsoids.

Experimental Compound (I)

Crystal data

C₁₃H₄N₄O₉.C₁₂H₁₂ $M_r = 516.42$ Monoclinic $P2_1/c$ a = 7.131 (1) Å b = 10.852 (4) Å c = 29.553 (8) Å $\beta = 91.85$ (2)° V = 2286 (1) Å³ Z = 4 $D_x = 1.499$ Mg m⁻³ Cu $K\alpha$ radiation $\lambda = 1.54184$ Å

Cell parameters from 25 reflections $\theta = 10.1-26.6^{\circ}$ $\mu = 1.005 \text{ mm}^{-1}$ T = 290 KPrism $0.21 \times 0.15 \times 0.14 \text{ mm}$ Deep red Crystal source: 1:1 mol mixture of parent compounds in 1:1 toluene-acetone

Data collection

Siemens *P*3 diffractometer $\omega/2\theta$ scans Absorption correction: none 6348 measured reflections 3174 independent reflections 1745 observed reflections $[F \ge 3\sigma(F) \text{ and } I \ge 3\sigma(I)]$ *R*_{int} = 0.079

Refinement

Refinement on F Final R = 0.063 wR = 0.046 S = 3.771745 reflections 343 parameters H-atom parameters not refined $w = 1/\sigma^2(F)$ $(\Delta/\sigma)_{max} = 0.01$ $h = 0 \rightarrow 8$ $k = -12 \rightarrow 12$ $l = -32 \rightarrow 32$ 3 standard reflections monitored every 50 reflections intensity variation: $\pm 7\%$

 $\theta_{\rm max} = 55^{\circ}$

 $\begin{array}{l} \Delta\rho_{max}=0.3 \ e \ {\rm \AA}^{-3} \\ \Delta\rho_{min}=-0.1 \ e \ {\rm \AA}^{-3} \\ {\rm Atomic \ scattering \ factors} \\ {\rm from \ Hanson, \ Herman,} \\ {\rm Lea \ \& \ Skillman \ (1964)} \\ {\rm for \ non-H \ atoms \ and} \\ {\rm from \ Stewart, \ Davidson} \\ {\rm \& \ Simpson \ (1965) \ for \ H} \\ {\rm atoms} \end{array}$

REGULAR STRUCTURAL PAPERS

Compound (II)				C4	0.6640 (8)	1.1498 (5)	0.1743 (2)	3.3
Crystal data				C5	0.7316 (8)	1.4546 (5)	0.2045 (2)	3.6
				C6	0.7812 (9)	1.5784 (5)	0.2062 (2)	4.1
$C_{13}H_4N_4O_9.C_{16}H_{14}$	Cel	ll parameters f	rom 25	C7	0.8114(9) 0.7020(0)	1.03/2(0)	0.1005 (2)	4.5
$M_r = 566.48$	1	reflections		C9	0.6989 (9)	1.3798 (5)	0.1243(2) 0.0843(2)	4.0
Monoclinic	θ =	= 12.0−44.7°		C10	0.6486 (8)	1.2572 (5)	0.1044 (2)	3.5
$P2_1/n$	μ=	$= 0.963 \text{ mm}^{-1}$		C11	0.6789 (8)	1.2605 (5)	0.1510 (2)	3.0
a = 12840(4) Å	Г Т =	= 290 K		C12	0.7208 (8)	1.3912 (5)	0.1642 (2)	3.2
a = 12.040 (4) A b = 15.072 (4) Å	Dri	270 IL		C13	0.7450 (8)	1.4580 (5)	0.1244 (2)	3.6
b = 13.072 (4) A	0.1	5 ~ 0 12 ~ 0	10 mm	C14	0.870 (2)	0.7516 (8)	0.4433 (2)	6.6
c = 14.439(3) A	0.1	$J \times 0.13 \times 0.13$			0.902 (1)	0.6433 (8)	0.4210 (3)	6.3
$\beta = 114.54 (2)^{\circ}$	De	ep rea		C17	0.879(1)	0.0310(8) 0.7312(9)	0.3738 (3)	5.8
$V = 2542 (1) \text{ A}^3$	Cry	ystal source: 1:	I mol mix-	C18	0.757 (1)	0.9496 (9)	0.3437 (3)	7.1
Z = 4	t	ture of parent of	compounds	C19	0.721 (1)	1.0583 (9)	0.3642 (4)	7.8
$D_x = 1.480 \text{ Mg m}^{-3}$	i	n 1:1 toluene-	acetone	C20	0.738 (1)	1.0704 (8)	0.4111 (4)	7.4
Cu $K\alpha$ radiation	•			C21	0.782 (1)	0.9703 (8)	0.4379 (2)	6.4
$\lambda = 1.54184 \text{ Å}$				C22	0.8206 (9)	0.8555 (7)	0.4171 (2)	5.1
				C23	0.8023 (9)	0.8455 (7)	0.3696 (2)	5.5
				C24 C25	0.884 (2)	0.7616(8)	0.4938 (3)	10.3
Data collection				C25	0.943 (2)	0.0090 (9)	0.5180 (3)	14.8
	0	55 0		Compound (II)			
Siemens P3 diffractomete	θ_{ma}	$x = 55^{\circ}$		O2A	0.4719 (6)	0.9124 (4)	0.0999 (5)	8.2
$\omega/2\theta$ scans	h =	$0 \rightarrow 13$		02 <i>B</i>	0.4866 (5)	0.7830 (4)	-0.1615 (4)	7.7
Absorption correction:	<i>k</i> =	$-15 \rightarrow 15$		04A	0.3823(4)	0.5173 (3)	0.0220 (4)	7.3
none	l =	• —15 → 15		054	0.4743 (4)	0.5270(3)	0.1433 (4)	5.0
6752 measured reflection	s 3 st	tandard reflecti	ons	05 <i>B</i>	0.3358 (4)	0.4586 (3)	0.0939(4)	64
3376 independent reflecti	ons r	nonitored ever	v 50	07 <i>A</i>	0.2340 (4)	0.6237 (4)	0.4854 (4)	7.3
1441 observed reflections	:	reflections	,	07 <i>B</i>	0.2278 (5)	0.7672 (4)	0.4795 (4)	6.2
$[F > 3\sigma(F) \text{ and } I > 3\sigma(F)$	י ומ	ntensity variati	n + 4%	09	0.3623 (4)	0.9178 (3)	0.2139 (3)	4.4
$P_{1} = 0.054$	·/] [inclusity variati	ын. <u>т</u> +//	N2	0.4687 (6)	0.8306 (5)	-0.1030 (5)	5.1
$\Lambda_{\rm int} = 0.034$				N4	0.4210 (6)	0.5598 (4)	0.0585 (5)	6.5
				N7	0.2942(3) 0.2425(5)	0.5220 (4)	0.1808 (3)	5.5
D.C.				Cl	0.4133 (6)	0.8413(4)	0.0420 (5)	3.3 4 1
Refinement				C2	0.4376 (6)	0.7868 (6)	-0.0241(6)	3.2
Refinement on F	$\Delta \rho$	max = 0.2 e Å⁻	-3	C3	0.4367 (6)	0.6978 (6)	-0.0195 (5)	4.2
Final $R = 0.050$		$m_{m_{1}} = -0.1 e^{A}$	1 −3	C4	0.4079 (6)	0.6566 (4)	0.0521 (5)	3.6
wR = 0.031		mic scattering	factors	C5	0.3054 (5)	0.6098 (4)	0.2374 (5)	3.8
S = 1.00	AIC	ham Hansan I	Taciois		0.2763 (5)	0.6121 (5)	0.3184 (5)	3.4
3 - 1.90 1441 molections	1	roin Hanson, r	ierman,	C8	0.2741 (5)	0.0923(3) 0.7713(4)	0.3022 (5)	2.5
	L	lea & Skillman	1 (1964)	C9	0.3588 (6)	0.8402 (5)	0.1933(5)	40
3/9 parameters	t	or non-H atom	is and	C10	0.3850 (5)	0.7987 (4)	0.1130 (5)	3.2
H-atom parameters not re	⊱ fi	rom Stewart, I	Davidson	C11	0.3767 (5)	0.7063 (5)	0.1184 (5)	2.0
fined	6	& Simpson (19	65) for H	C12	0.3378 (5)	0.6850 (4)	0.1997 (4)	2.5
$w = 1/\sigma^2(F)$	а	toms		C13	0.3296 (5)	0.7650 (4)	0.2458 (5)	2.8
$(\Delta/\sigma)_{\rm max} = 0.01$				C14 C15	0.0847 (6)	0.6/41 (5)	0.2629 (6)	4.5
. , .				C16	0.6801 (6)	0.7333 (7)	0.2243 (3)	4.4 4 Q
				C17	0.6433 (6)	0.8323 (4)	0.3393 (5)	3.7
Table 1 Frankland Later 1 11 1 1			C18	0.5523 (5)	0.8267 (4)	0.4994 (5)	2.8	
Table 1. Fractional an	σπις coor	rainates ana	equivalent	C19	0.5120 (5)	0.8231 (5)	0.5739 (5)	4.0
isotropic the	ermal para	ameters (\hat{A}^2)		C20	0.5035 (5)	0.7396 (5)	0.6135 (4)	3.6
-	-			C21	0.5327 (6)	0.6647 (4)	0.5772 (6)	3.6
$B_{\rm eq} =$	(4/3)と _i とj6	¢ _{ij} a _i .a _j .		C22	0.6020 (6)	0.5881 (4)	0.4027 (6)	3.4
x	у	z	Beg	C24	0.6481 (5)	0.6722(5)	0.3672(0) 0.3424(5)	4.2
Compound (I)				C25	0.6249 (5)	0.7527 (5)	0.3808 (5)	3.3
0.6954 (7)	1.4072 (3)	0.0452 (1)	5.7	C26	0.5852 (5)	0.7506 (5)	0.4601 (5)	3.0

9.2

9.0

5.7

4.9

4.8

6.0

6.7

8.8

7.3 4.5

4.8

6.3

4.5

4.1

3.6

C27

C28

C29

0.0444 (2)

0.1072 (2)

0.2451 (1)

0.2339 (1)

0.2460 (1)

0.2830 (1) 0.2042 (2)

0.1340 (2)

0.0841 (2)

0.2213 (2)

0.2478 (2)

0.1679 (3)

0.0808 (2)

0.1071 (2) 0.1525 (2)

Table 2. Interatomic distances (Å), bond angles (°) and torsion angles (°)

0.6676 (5)

0.9203 (5)

0.9063 (4)

0.5007 (5)

0.2213 (5)

0.6118 (5)

4.0

5.1

4.1

0.5741 (5)

0.7043 (6)

0.4758 (6)

Signs for torsion angles as per Klyne & Prelog (1960).

Compound (I) 01-C9 1.192 (6) C7-C8 1.382 (7) 024-N2 1.204 (6) C8-C13 1.394 (6) 02B-N2 1.211 (6) C9-C10 1.505 (6)

1842

02A

O2*B*

04*A*

04*B*

05A

05*B*

07A

07*B*

N2

N4

N5

N7

C1

C2

C3

0.4573 (8)

0.4926 (9)

0.6398 (7) 0.8692 (6)

0.5416(6)

0.7488 (7)

0.8463 (7)

0.9238 (9)

0.5007 (9)

0.7316 (9) 0.6725 (8)

0.868 (1)

0.5934 (8)

0.5669 (8)

0.6061 (8)

0.9390 (4)

0.8423 (5)

1.0670 (4)

1.1938 (4)

1.3284 (4)

1.4402 (4)

1.8240 (4)

1.8156 (4)

0.9342 (6)

1.1365 (5)

1.4027 (5)

1.7711 (5)

1.1527 (6)

1.0482 (6)

1.0439 (5)

REGULAR STRUCTURAL PAPERS

044 N4	1 232 (5)	C9C13	1 487 (7)	C10-C1	1 380 (7)	C27—C21	1.412 (8)
	1.252 (5)		1.307 (7)		1 400 (7)	C21 C20	1 361 (7)
04 <i>B</i> —N4	1.210(5)		1.367 (0)		1.490(7)	C21=C20	1.301 (7)
O5A—N5	1.233 (5)	C11-C12	1.499 (6)	C12-C5	1.393 (7)	C20—C19	1.406 (8)
O58N5	1.226 (5)	C12-C13	1,396 (6)	C5—C6	1.368 (7)	C19—C29	1.515 (7)
074 N7	1 220 (6)	C14 C15	1 370 (8)	C6C7	1 370 (7)	C19_C18	1 374 (7)
	1.229 (0)	014-013	1.370 (0)		1.205 (0)		1 420 (7)
07 <i>B</i> —N7	1.192 (6)	C14 - C22	1.405 (8)	C/C8	1.385 (8)	C18-C26	1.420 (7)
N2C2	1.481 (7)	C14—C24	1.496 (8)	$C_{2} = N_{2} = O_{2} A$	115 2 (8)	C8-C13-C9	126.6 (6)
N4-C4	1 463 (6)	C15-C16	1.404 (9)	C2-N2-02A	115.2 (0)		120.0 (0)
NE CE	1.105 (0)		1 250 (0)	C2-N2-O2B	117.2(8)	$C_{24} - C_{14} - C_{15}$	120.6 (7)
NJ-CJ	1.475 (0)		1.339 (9)	O2A - N2 - O2B	127.6 (9)	C14—C15—C16	120.6 (7)
N7C7	1.509 (7)	C17—C23	1.416 (8)	C4-N4-044	117.7 (7)	C15-C16-C28	119.3 (8)
C1-C2	1.391 (6)	C18–C19	1.354 (9)		1176(6)	C18 C16 C17	1217(9)
$C_1 - C_{10}$	1 381 (6)	C18_C23	1 396 (9)	C4N4	117.0(0)	028-010-017	121.7 (6)
	1.362 (7)	C10 C20	1.00(1)	04 <i>B</i> —N4—O4 <i>A</i>	124.6 (7)	CI5-CI6-CI7	119.0(/)
$C_2 = C_3$	1.303 (7)	C19-C20	1.40(1)	C5-N5-O5A	117.1 (6)	C16-C17-C25	122.4 (7)
C3C4	1.376 (6)	C20-C21	1.375 (9)	C5-N5-05R	11706	C26C18C19	1235 (6)
C4-C11	1.391 (6)	C21-C22	1.419 (8)		117.0 (0)		123.3 (0)
C5 C6	1 200 (6)	C22 C23	1 410 (7)	$O_{2}B - N_{2} - O_{2}A$	125.9(7)	C18-C19-C29	121.4(7)
0-00	1.390 (0)	022-023	1.410(7)	C7N7O7A	115.8 (8)	C29—C19—C20	120.4 (7)
C5-C12	1.376 (6)	C24-C25	1.30(1)	C7-N7-078	1179(7)	C20-C19-C18	118.2 (7)
C6—C7	1.360 (7)			078 N7 074	126 2 (9)	C10 C20 C21	120 4 (6)
				0/B = N/= 0/A	120.2 (0)	C19=C20=C21	120.4 (0)
C2—N2—O2A	118.6 (6)	C1-C10-C9	126.4 (5)	C10-C1-C2	116.0 (6)	C20-C21-C27	121.9 (6)
C2-N2-O2B	116.7 (6)	C1C10C11	123.7 (5)	C1-C2-N2	117.7 (8)	C27—C22—C23	121.0 (7)
O24 N2 $O2B$	124 7 (7)	C_{4} $- C_{11}$ $- C_{10}$	1173(5)	$N_{2} - C_{2} - C_{3}$	1100 (8)	$C^{22} - C^{23} - C^{24}$	122 1 (7)
	115.0 (5)		124.0 (5)	$N_2 = C_2 = C_3$	112.0 (0)		121.0 (9)
C4—N4—O4A	115.9 (5)	C4 - CII - CI2	134.9(3)	$C_1 - C_2 - C_3$	123.2(7)	$C_{23} - C_{24} - C_{14}$	121.6 (6)
C4—N4—O4B	118.6 (5)	C10-C11-C12	107.9 (5)	C2-C3-C4	119.7 (7)	C23-C24-C25	118.5 (7)
O4A—N4—O4B	125.5 (5)	C5-C12-C11	134.7 (5)	C3-C4-N4	115.7 (7)	C25-C24-C14	119.7 (7)
C5N5054	1167(5)	C11_C12_C13	107 5 (5)	N4 C4 C11	1232 (7)	C17_C25_C26	122 6 (8)
	110.7 (5)		107.5 (5)	N4C4C11	123.2 (7)	017=025=020	122.0 (6)
C5-N5-O5B	118.6 (5)	C5-C12-C13	117.7 (5)	C3-C4-C11	120.9 (6)	$C_{-C_{8}-C_{13}}$	110.5 (0)
O5A—N5—O5B	124.6 (6)	C8-C13-C9	126.8 (5)	C12-C5-N5	120.8 (7)	C13C9O9	127.0 (7)
C7_N7_07A	1157(7)	C8-C13-C12	122.8 (5)	N5-C5-C6	1160(7)	09-09-010	1277(7)
	117 5 (7)		110.2 (5)		10.0(7)		105 2 (6)
$C_{1} = N_{1} = O_{1}B$	117.5(7)	C9-C13-C12	110.2 (5)	12 - 15 - 10	123.0(7)	C13-C9-C10	105.5 (6)
O7A—N7—O7B	126.7 (7)	C15—C14—C22	117.8 (7)	C5—C6—C7	118.9 (6)	C9-C10-C1	127.1 (6)
C10-C1-C2	115.4 (5)	C15-C14-C24	122.3 (8)	C6-C7-N7	119.2 (7)	C9-C10-C11	109.3 (6)
C_1 C_2 C_3	123 4 (5)	C22_C14_C24	1199(7)	N7 C7 C9	119.6 (7)	C11 C10 C1	123.6 (6)
$c_1 = c_2 = c_3$	123.4 (3)	014 015 016	100 6 (9)	N/	110.0(7)		123.0 (0)
C1 - C2 - N2	118.2 (6)	014-015-016	122.0 (8)	C6—C7—C8	122.2 (6)	C1/-C25-C24	117.8 (6)
C3-C2-N2	118.4 (6)	C15—C16—C17	120.4 (8)	C10-C11-C12	108.4 (6)	C26—C25—C24	119.6 (7)
$C_{2}-C_{3}-C_{4}$	118 8 (5)	C16-C17-C23	118.6 (7)	C_{10} C_{11} C_{4}	1164 (6)	C25-C26-C18	124 4 (8)
C2 C3 C4 N4	1166(5)	C10 C18 C23	120.2 (8)		110.4 (0)		110.0 (7)
C3-C4-N4	110.0 (5)	013-013-023	120.2 (0)	C12 - C11 - C4	135.2 (7)	$C_{23} = C_{20} = C_{21}$	110.0(7)
C3-C4-C11	121.0 (5)	C18-C19-C20	121.0 (9)	C11-C12-C5	137.3 (7)	C27—C26—C18	116.8 (6)
C11-C4-N4	122.0 (5)	C19-C20-C21	120.5 (8)	C5-C12-C13	114.9 (6)	C21-C27-C22	120.8 (7)
C12_C5_N5	123 5 (5)	C20-C21-C22	119.3 (7)	C13_C12_C11	107.8 (6)	C21C27C26	119.2 (7)
	123.5 (5)	C14 C22 C21	120.0 (7)		107.0 (0)	$c_{21} - c_{27} - c_{20}$	112.2 (7)
C6 - C5 - C12	121.5 (5)	014-022-021	120.9 (7)	C8-C13-C12	124.3 (6)	$C_{26} - C_{27} - C_{22}$	120.0 (7)
C6-C5-N5	114.6 (5)	C14-C22-C23	120.0 (7)	C12-C13-C9	109.1 (6)		
C5-C6-C7	117.9 (5)	C21-C22-C23	119.0 (7)			010 05 NG 050	
C6 C7 C9	124 3 (5)	C17_C23_C18	110 8 (8)	C1-C2-N2-O2A	1(1)	C12—C5—N5—O5B	135.1 (7)
0-07-08	124.5(5)	017 023 023	110.4 (7)	C1-C2-N2-O2B	-178.1(7)	C6-C5-N5-O5A	129.0 (7)
C6C7N7	118.5 (6)	C1/-C23-C22	120.4 (7)	C3 C2 N2 024	-177 2 (8)	C6-C5-N505B	-48 3 (8)
C8-C7-N7	117.2 (6)	O1-C9-C13	128.9 (5)		2 (1)	CC C7 N7 074	97(0)
C7C8C13	115.5 (5)	01-C9-C10	127.3 (5)	$C_3 - C_2 - N_2 - O_2 B$	3(1)	$C_0 - C_1 - N_1 - O_1 A$	8.7 (9)
	102.9 (5)		110 7 (8)	C3—C4—N4—O4A	-47 (1)	C6—C7—N7—O7B	-171.3 (7)
	105.8 (5)	014-023-022	119.7 (0)	C3-C4-N4-O4B	129.8 (7)	C8-C7-N7-07A	-172.8(7)
C9-C10-C11	109.7 (5)	C14-C24-C25	120(1)		127 9 (7)	C8 C7 N7 078	7 (1)
CI C2 N2 O24	6 (1)	C6 C5 N5 O54	1417(5)	CII-C4-N4-04A	137.6(7)	C6-C7-N7-07B	7 (1)
CI = C2 = N2 = O2A	-0(1)	C0-CJ-NJ-0JA	141.7 (5)	CII—C4—N4—O4B	-46(1)	C4 - C11 - C12 - C5	-8(1)
C1 - C2 - N2 - O2B	174.5 (7)	C6-C5-N5-O5B	-34.7(7)	C12-C5-N5-O5A	-47.6 (9)	C10-C11-C12-C13	-3.3 (7)
C3-C2-N2-O2A	176.5 (7)	C6-C7-N7-07A	-14(1)				
$C_{3}-C_{2}-N_{2}-O_{2}B$	-3(1)	C6-C7-N7-O7B	167.8 (7)				1 .
C3 C4 N4 044	-421(7)	C8_C7_N7_074	165 4 (6)	For structure (1), .	3/ of the 38	non-H atoms were	located by
	- 42.1 (7)		12 (1)	MI/ITAN76 (Main	Woolfson &	Germain 1976) usir	of the coor-
C3-C4-N404B	138.4 (5)	C8-C/-N/0/B	-13(1)		,		ig ine eee.
C11-C4-N4-O4A	145.6 (5)	C15-C14-C24-C25	6 (2)	dinates for TNF, a	two-dimensi	onal estimate of the	coordinates
C11-C4-N4-O4B	-33.8 (8)	C22-C14-C24-C25	-175 (1)	for 1-FTNP and a	K curve to c	ompute the F values	For struc-
C12_C5_N5_054	-317(8)	$C_{13} - C_{12} - C_{11} - C_{10}$	-97(7)			ompute the <i>L</i> values	
C12-C5-N5-O5A	152.0 (6)		12 (1)	ture (II), all 42 non	 H atoms we 	ere located by MULTA	4N/6 using
C12-C5-N5-O5B	152.0 (0)	05-012-011-04	-12(1)	coordinates for TN	E a two-dim	ensional estimate of	the coordi-
					r, a two-unn		
Compound (II)				nates for 3.6-DMP	and a K curv	e to compute the E v	alues. Aro-
N2_024	1 233 (7)	C8-C13	1 379 (7)		1.00		
N2 O2P	1 201 (7)	C13 C12	1 /02 (9)	matic H atoms we	re set at 1.00	A from the respective	ve C atoms
N2	1.201 (7)		1.405 (8)	while bisecting the		angle. The alkyl H a	toms of (I)
N2C2	1.507 (9)	C13-C9	1.497 (8)	while biseeting di			1
N404A	1.235 (6)	C9-C10	1.474 (8)	and the methyl H a	itoms of (II)	were set in tetrahedra	al positions
N4	1 232 (6)	C9	1.202 (7)	at 1 10 Å Ear 1 -	h atm.ct	anicotronic than-al	-
NA CA	1.202 (0)	CIA CIE	1 271 (0)	at 1.10 A. FOT DOL	ii structures,	ausotropic mermai	parameters
IN4-U4	1.408 (/)	014-013	1.3/1 (9)	were used for all h	ut the H ator	ns, which were assig	ned the B
N5	1.228 (6)	C15-C16	1.405 (9)			have and have 1 -1 D	
N5	1.223 (6)	C16-C28	1.513 (8)	value of the C ator	n to which th	ney are bonded. Prog	rams used:
NS CS	1 492 (7)	C16-C17	1 370 (8)	MILITANTA ALLS	(Lann & Iac	obson 1979) FOIL	Powell &
N3-C3	1.402 (7)		1.377 (0)	mountil, ALLS	Lapp of Jac		
N7	1.219 (7)	CI/C25	1.403 (7)	Jacobson, 1980): C	<i>JRFFE</i> (Busi	ing, Martin & Levy.	1964); OR-
N7—O7B	1.209 (7)	C25-C24	1.417 (8)	TED (Johnson 107	(1) `		
N7	1.482 (8)	C24—C14	1.410 (8)	IEF (Johnson, 19/	1).		
	1 200 (0)	C24 C23	1 /37 (9)				
	1.390 (8)	(24 - (23))	1.437 (8)			1	• •
C2-C3	1.343 (8)	C23—C22	1.321 (8)	The authors v	vish to that	nk Northeast Miss	ouri State
C3—C4	1.383 (8)	C22—C27	1.423 (8)	Timirrancia-?- TT	lanama darata	December Stimend	
C4-C11	1 398 (7)	C27-C26	1.414 (7)	University's Uno	regraduate	Research Supend	program,
	1.000 (7)	C16 C15	1 425 (7)	and Computer Se	rvices for t	he computer time	
CII-CI0	1.402 (7)	L20-L23	1.433 (7)	and Computer St		ne computer time.	

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and least-squares-planes data, along with diagrams showing the molecular stacking for both compounds have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71171 (23 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: CD1015]

References

- Baughman, R. G. (1982). Cryst. Struct. Commun. 11, 479-484.
- Baughman, R. G. (1987). Acta Cryst. C43, 933-936.
- Busing, E. R., Martin, K. O. & Levy, H. A. (1964). ORFFE. A Fortran Crystallographic Function and Error Program. Report ORNL-TM-306. Oak Ridge National Laboratory, Tennessee, USA.
- Hanson, H. P., Herman, F., Lea, J. D. & Skillman, S. (1964). Acta Cryst. 17, 1040–1044.
- Johnson, C. K. (1971). ORTEP. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee, USA.
- Klyne, W. & Prelog, V. (1960). Experientia, 16, 521-523.
- Lapp, R. L. & Jacobson, R. A. (1979). ALLS. A Generalized Crystallographic Least-Squares Program. Ames Laboratory (DOE) and Iowa State Univ., Ames, Iowa, USA.
- Main, P., Woolfson, M. M. & Germain, G. (1976). MULTAN76. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Pauling, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
- Powell, D. R. & Jacobson, R. A. (1980). FOUR. A Generalized Fourier Program. Ames Laboratory (DOE) and Iowa State Univ., Ames, Iowa, USA.
- Shah, M. C. & Baughman, R. G. (1993). Acta Cryst. Submitted.
- Stewart, R. F., Davidson, E. R. & Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1993). C49, 1844-1845

Structure of Hydralazine Hydrochloride

Nobuo Okabe, Hatsuko Fukuda and Tomoko Nakamura

Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577, Japan

(Received 16 October 1992; accepted 14 April 1993)

Abstract

The hydrazine side chain of 1(2H)-phthalazinone hydrazone hydrochloride is nearly coplanar, with the phthalazine ring having a torsion angle N(2)— C(1)—N(4)—N(5) of -0.4 (5)°. The N(2) atom of the phthalazine ring is protonated and forms an intermolecular hydrogen bond with the amino N atom of the side chain. Another hydrogen bond is formed between the imino N atom of the side chain and the Cl ion.

Comment

1(2H)-Phthalazinone hydrazone, also known as hydralazine, is a potent therapeutic drug for hypertension (Perry, 1973). This compound causes sitespecific DNA damage (Yamamoto & Kawanishi, 1991) and has mutagenic and/or carcinogenic potency (Toth, 1980; Parodi *et al.*, 1981). A complete structural analysis of this compound therefore seemed very important for understanding its biological function. In this study, the structure of the hydrochloride form of hydralazine has been determined.

Fig. 1. Perspective view of 1(2H)-phthalazinone hydrazone hydrochloride with atomic numbering, viewed down the x axis.

Experimental

Crystal data

 $C_8H_9N_4^+.Cl^-$ Mo $K\alpha$ radiation $\lambda = 0.71069 \text{ Å}$ $M_r = 196.64$ Monoclinic Cell parameters from 17 $P2_1/a$ reflections $\theta = 10.35 - 13.50^{\circ}$ a = 6.644 (2) Å $\mu = 0.385 \text{ mm}^{-1}$ b = 14.531 (3) Å T = 296 Kc = 9.413(1) Å Needle $\beta = 103.57 (2)^{\circ}$ $0.30 \times 0.20 \times 0.20$ mm V = 883.4 (3) Å³ Colorless Z = 4 $D_x = 1.478 \text{ Mg m}^{-3}$ $D_m = 1.478 (1) \text{ Mg m}^{-3}$ Data collection Rigaku AFC-5R diffractome- $R_{\rm int} = 0.024$

 $\theta_{\rm max} = 27.5^{\circ}$ ter ω -2 θ scans $h = 0 \rightarrow 8$ $k = 0 \rightarrow 18$ Absorption correction: $l = -12 \rightarrow 11$ DIFABS (Walker & Stu-3 standard reflections art, 1983) $T_{\rm min} = 0.89, T_{\rm max} = 1.03$ monitored every 150 reflections 2299 measured reflections intensity variation: 5.08% 2128 independent reflections decay 1184 observed reflections $[I > 3.00\sigma(I)]$